Философский энциклопедический словарь 2

3 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я A B C D E F G H I J K L M N O P Q R S T U V X

ФОРМАЛИЗАЦИЯ


        отображение результатов мышления в точных понятиях или утверждениях. В этом смысле Ф. противопоставляется содержательному или интуитивному мышлению. В математике и формальной логике, где Ф. наиболее развита, под Ф. обычно понимают отображение содержат. знания в знаковом формализме, или формализованном языке. Непременным условием для построения такого языка является использование аксиоматич. метода, благодаря крому удаётся получить все утверждения теории из небольшого числа принимаемых без доказательства утверждений, или аксиом. Полная Ф. теории достигается лишь тогда, когда отвлекаются от содержат. смысла самих исходных понятий и аксиом теории и полностью перечисляют правила логич. вывода теорем из аксиом. Использование аксиоматич. метода в процессе Ф. обеспечивает такую систематизацию знания, при которой его отд. элементы не просто координируют друг с другом, а находятся в отношении субординации (см. Ф. Энгельс, в кн.: Маркс К. и Энгельс Ф., Соч., т. 20, с. 538). Поиски аксиом, из которых можно чисто логич. путём вывести следствия, или теоремы, составляют одну из важнейших задач Ф.
        Ф. доказательства даёт возможность освободиться от обращения к интуитивным представлениям, что имеет решающее значение для строгости вывода. Представление доказательства в виде последовательности формул, каждая из которых является либо аксиомой, либо получается из аксиом по правилам вывода, превращает сам процесс проверки доказательства в чисто механич. процедуру и может быть передан вычислит. машине. Доказательство глубоко связано с вычислением, вместе с крым его можно представить как непосредственное (хотя и абстрактное) материальное созерцание (см. там же, с. 631).
        Ф. играет существ. роль в анализе, уточнении и экспликации науч. понятий. Интуитивные понятия, хотя и кажутся более ясными с т. зр. обыденного сознания, однако в силу их неопределённости и неоднозначности они мало пригодны для науки. В науч. познании нередко нельзя не только разрешить, но даже сформулировать и поставить проблемы до тех пор, пока не будут разъяснены и уточнены относящиеся к ним понятия. Так, понятие алгоритма издавна применялось в математике, но только после того, как оно получило точное и строгое определение в 1930-х гг., стало возможным доказательство существования алгоритмически неразрешимых проблем.
        Ф. неразрывно связана с построением искусственных, или формализованных, науч. языков. Такие языки создаются для точного выражения мыслей с целью исключить возможность неоднозначного понимания. Ф. даёт возможность строить науч. языки с точно установленной структурой и заданными правилами преобразования одних выражений в другие.
        Полученные с помощью методов Ф. результаты имеют важное филос. значение прежде всего для решения проблемы соотношения формальных и содержат. компонентов в науч. познании. Исследования по разрешимости формализованных математич. теорий, начало которым положил Чёрч доказательством отсутствия разрешающей процедуры для узкого исчисления предикатов, подорвали веру в принципы чисто формального обоснования математики, выдвинутые Гильбертом. Еще более существ. значение имели результаты Гёделя о неполноте формализованной арифметики, теоремы Тар-ского о неформализуемости понятия истины в рамках формализмов и др. Эти исследования показали ограниченность неопозитивистской программы анализа науки, исходящей из примата формы над содержанием и сводящей все проблемы философии науки к анализу структуры науч. языка.
        Диалектич. материализм рассматривает Ф. как средство выявления и уточнения содержания науч. знания. Подчёркивая обусловленность методов Ф. содержанием науч. знания, диалектикоматериалистич. концепция признаёт значит. роль формы и формальных компонентов в раскрытии этого содержания. Вместе с тем никакая Ф. не может исчерпать всего богатства содержания, она способна лишь приближаться к этому пределу в бесконечном процессе науч. познания.
        К лини С. К., Введение в метаматематику, пер. с англ., М., 1957; Яновская С. А., Методологии, проблемы науки, М., 1972; Кураев В. И., Диалектика содержательного и формального в науч. познании, М., 1977; Манин Ю.И., Доказуемое и недоказуемое, М., 1979; Want; Н., Logic, computers and sets, ?. ?., 197U, eh. 3, p. 57—67.
Вы можете поставить ссылку на это слово:

будет выглядеть так: ФОРМАЛИЗАЦИЯ